Skip to main content

The concept and future prospects of soil health

4 months ago
  • Ladyman, J., Lambert, J. & Wiesner, K. What is a complex system? Eur. J. Philos. Sci. 3, 33–67 (2013).

    Google Scholar 

  • Brevik, E. C. et al. The interdisciplinary nature of SOIL. Soil 1, 117–129 (2015).

    Google Scholar 

  • Blum, W. E. Functions of soil for society and the environment. Rev. Environ. Sci. Biotechnol. 4, 75–79 (2005).

    Google Scholar 

  • Baveye, P. C., Baveye, J. & Gowdy, J. Soil “ecosystem” services and natural capital: critical appraisal of research on uncertain ground. Front. Environ. Sci. 4, 41 (2016).

    Google Scholar 

  • Keith, A. M., Schmidt, O. & McMahon, B. J. Soil stewardship as a nexus between ecosystem services and one health. Ecosyst. Serv. 17, 40–42 (2016).

    Google Scholar 

  • Bünemann, E. K. et al. Soil quality–a critical review. Soil Biol. Biochem. 120, 105–125 (2018).

    Google Scholar 

  • Patzel, N., Sticher, H. & Karlen, D. L. Soil fertility – phenomenon and concept. J. Plant Nutr. Soil Sci. 163, 129–142 (2000).

    Google Scholar 

  • Doran, J. W. & Parkin, T. B. in Defining Soil Quality for a Sustainable Environment Vol. 32 (eds Doran, J. W., Coleman, D. C., Bezdicek, D. F. & Stewart, B. A.) 1–21 (Soil Science Society of America, 1994).

  • Pankhurst, C. E., Doube, B. M. & Gupta, V. V. S. R. in Biological Indicators of Soil Health (eds Pankhurst, C., Doube, B. & Gupta, V.) 419–435 (CAB International, 1997).

  • McBratney, A., Field, D. J. & Koch, A. The dimensions of soil security. Geoderma 213, 203–213 (2014).

    Google Scholar 

  • Koch, A. et al. Soil security: solving the global soil crisis. Glob. Policy 4, 434–441 (2013).

    Google Scholar 

  • Stankovics, P., Tóth, G. & Tóth, Z. Identifying gaps between the legislative tools of soil protection in the EU member states for a common European soil protection legislation. Sustainability 10, 2886 (2018).

    Google Scholar 

  • Montanarella, L. Agricultural policy: govern our soils. Nature 528, 32–33 (2015).

    Google Scholar 

  • Jian, J., Du, X. & Stewart, R. D. A database for global soil health assessment. Sci. Data 7, 16 (2020).

    Google Scholar 

  • Karlen, D. L., Veum, K. S., Sudduth, K. A., Obrycki, J. F. & Nunes, M. R. Soil health assessment: past accomplishments, current activities, and future opportunities. Soil Tillage Res. 195, 104365 (2019).

    Google Scholar 

  • Norris, C. E. & Congreves, K. A. Alternative management practices improve soil health indices in intensive vegetable cropping systems: a review. Front. Environ. Sci. 6, 50 (2018).

    Google Scholar 

  • O’Dell, R. E. & Claassen, V. P. Vertical distribution of organic amendment influences the rooting depth of revegetation species on barren, subgrade serpentine substrate. Plant Soil 285, 19–29 (2006).

    Google Scholar 

  • Congreves, K. A., Hayes, A., Verhallen, E. A. & Van Eerd, L. L. Long-term impact of tillage and crop rotation on soil health at four temperate agroecosystems. Soil Tillage Res. 152, 17–28 (2015).

    Google Scholar 

  • Hamza, M. A. & Anderson, W. K. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121–145 (2005).

    Google Scholar 

  • Jenkinson, D. S. The Rothamsted long-term experiments: Are they still of use? Agron. J. 83, 2–10 (1991).

    Google Scholar 

  • Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    Google Scholar 

  • Chaparro, J. M., Sheflin, A. M., Manter, D. K. & Vivanco, J. M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).

    Google Scholar 

  • Bonanomi, G., Lorito, M., Vinale, F. & Woo, S. L. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 56, 1–20 (2018).

    Google Scholar 

  • Chen, X. D. et al. Soil biodiversity and biogeochemical function in managed ecosystems. Soil Res. 58, 1–20 (2020).

    Google Scholar 

  • Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).

    Google Scholar 

  • Ogle, S. M., Swan, A. & Paustian, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agric. Ecosyst. Environ. 149, 37–49 (2012).

    Google Scholar 

  • Zimnicki, T. et al. On quantifying water quality benefits of healthy soils. BioScience 70, 343–352 (2020).

    Google Scholar 

  • Evans, A. E., Mateo-Sagasta, J., Qadir, M., Boelee, E. & Ippolito, A. Agricultural water pollution: key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 36, 20–27 (2019).

    Google Scholar 

  • Carpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).

    Google Scholar 

  • Lamichhane, S., Krishna, K. B. & Sarukkalige, R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere 148, 336–353 (2016).

    Google Scholar 

  • Tournebize, J., Chaumont, C. & Mander, Ü. Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol. Eng. 103, 415–425 (2017).

    Google Scholar 

  • Hanson, J. R., Macalady, J. L., Harris, D. & Scow, K. M. Linking toluene degradation with specific microbial populations in soil. Appl. Environ. Microbiol. 65, 5403–5408 (1999).

    Google Scholar 

  • Li, G., Sun, G. X., Ren, Y., Luo, X. S. & Zhu, Y. G. Urban soil and human health: a review. Eur. J. Soil Sci. 69, 196–215 (2018).

    Google Scholar 

  • Laurenson, G., Laurenson, S., Bolan, N., Beecham, S. & Clark, I. The role of bioretention systems in the treatment of stormwater. Adv. Agron. 120, 223–274 (2013).

    Google Scholar 

  • Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

    Google Scholar 

  • Kadam, A. M., Oza, G. H., Nemade, P. D. & Shankar, H. S. Pathogen removal from municipal wastewater in constructed soil filter. Ecol. Eng. 33, 37–44 (2008).

    Google Scholar 

  • Welch, R. M. & Graham, R. D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55, 353–364 (2004).

    Google Scholar 

  • Barrett, C. B. & Bevis, L. E. The self-reinforcing feedback between low soil fertility and chronic poverty. Nat. Geosci. 8, 907–912 (2015).

    Google Scholar 

  • Wood, S. A., Tirfessa, D. & Baudron, F. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 266, 100–108 (2018).

    Google Scholar 

  • Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

    Google Scholar 

  • Jacoby, R., Peukert, M., Succurro, A., Koprivova, A. & Kopriva, S. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front. Plant Sci. 8, 1617 (2017).

    Google Scholar 

  • Schlatter, D., Kinkel, L., Thomashow, L., Weller, D. & Paulitz, T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107, 1284–1297 (2017).

    Google Scholar 

  • Rillig, M. C., Lehmann, A., Lehmann, J., Camenzind, T. & Rauh, C. Soil biodiversity effects from field to fork. Trends Plant Sci. 23, 17–24 (2018).

    Google Scholar 

  • Oliver, M. A. & Gregory, P. J. Soil, food security and human health: a review. Eur. J. Soil Sci. 66, 257–276 (2015).

    Google Scholar 

  • Hussein, H. S. & Brasel, J. M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167, 101–134 (2001).

    Google Scholar 

  • Bethony, J. et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 1521–1532 (2006).

    Google Scholar 

  • Schatz, A., Bugle, E. & Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc. Soc. Exp. Biol. Med. 55, 66–69 (1944).

    Google Scholar 

  • Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Google Scholar 

  • Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6, 8862 (2015).

    Google Scholar 

  • Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    Google Scholar 

  • Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    Google Scholar 

  • Denef, K. & Six, J. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. Eur. J. Soil Sci. 56, 469–479 (2005).

    Google Scholar 

  • Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T. & Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total. Environ. 648, 1484–1491 (2019).

    Google Scholar 

  • Van Wesemael, B. et al. An indicator for organic matter dynamics in temperate agricultural soils. Agric. Ecosyst. Environ. 274, 62–75 (2019).

    Google Scholar 

  • Bouma, J. et al. in Global Soil Security (eds Field, D. J., Morgan, C. L. S. & McBratney, A. B.) 27–44 (Springer, 2017).

  • Schoenholtz, S. H., Van Miegroet, H. & Burger, J. A. A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For. Ecol. Manag. 138, 335–356 (2000).

    Google Scholar 

  • Andrews, S. S. & Carroll, C. R. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol. Appl. 11, 1573–1585 (2001).

    Google Scholar 

  • Lilburne, L. R., Hewitt, A. E., Sparling, G. P. & Selvarajah, N. Soil quality in New Zealand: policy and the science response. J. Environ. Qual. 31, 1768–1773 (2002).

    Google Scholar 

  • Idowu, O. J. et al. Use of an integrative soil health test for evaluation of soil management impacts. Renew. Agric. Food Syst. 24, 214–224 (2009).

    Google Scholar 

  • Cherubin, M. R. et al. A Soil Management Assessment Framework (SMAF) evaluation of Brazilian sugarcane expansion on soil quality. Soil Sci. Soc. Am. J. 80, 215–226 (2016).

    Google Scholar 

  • E.U. Mission Board Soil Health and Food. Caring for Soil is Caring for Life. The Publications Office of the European Union https://op.europa.eu/en/web/eu-law-and-publications/publication-detail/-/publication/32d5d312-b689-11ea-bb7a-01aa75ed71a1 (European Commission, 2020).

  • Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B. & Cambardella, C. A. Biological soil health indicators respond to tillage intensity: a US meta-analysis. Geoderma 369, 114335 (2020).

    Google Scholar 

  • Kaiser, E. A. et al. Nitrous oxide release from arable soil: importance of N-fertilization, crops and temporal variation. Soil Biol. Biochem. 30, 1553–1563 (1998).

    Google Scholar 

  • Baldock, J. A., Beare, M. H., Curtin, D. & Hawke, B. Stocks, composition and vulnerability to loss of soil organic carbon predicted using mid-infrared spectroscopy. Soil Res. 56, 468–480 (2018).

    Google Scholar 

  • Rossel, R. V. et al. Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls. Nat. Geosci. 12, 547–552 (2019).

    Google Scholar 

  • Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).

    Google Scholar 

  • Pietrelli, A., Bavasso, I., Lovecchio, N., Ferrara, V. & Allard, B. in 8th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI) 302–306 (IEEE, 2019).

  • Shaikh, F. K. & Zeadally, S. Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sustain. Energy Rev. 55, 1041–1054 (2016).

    Google Scholar 

  • Tan, X., Sun, Z., Wang, P. & Sun, Y. Environment-aware localization for wireless sensor networks using magnetic induction. Ad Hoc Netw. 98, 102030 (2020).

    Google Scholar 

  • Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).

    Google Scholar 

  • Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1078 (2014).

    Google Scholar 

  • Van Den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    Google Scholar 

  • Rillig, M. C., Bonneval, K. & Lehmann, J. Sounds of soil: a new world of interactions under our feet? Soil Syst. 3, 45 (2019).

    Google Scholar 

  • Smolka, M. et al. A mobile lab-on-a-chip device for on-site soil nutrient analysis. Precision Agric. 18, 152–168 (2017).

    Google Scholar 

  • Rossel, R. A. V. & Bouma, J. Soil sensing: a new paradigm for agriculture. Agric. Syst. 148, 71–74 (2016).

    Google Scholar 

  • Ali, M. A., Dong, L., Dhau, J., Khosla, A. & Kaushik, A. Perspective — electrochemical sensors for soil quality assessment. J. Electrochem. Soc. 167, 037550 (2020).

    Google Scholar 

  • Enell, A. et al. Combining leaching and passive sampling to measure the mobility and distribution between porewater, DOC, and colloids of native oxy-PAHs, N-PACs, and PAHs in historically contaminated soil. Environ. Sci. Technol. 50, 11797–11805 (2016).

    Google Scholar 

  • Sismaet, H. J. & Goluch, E. D. Electrochemical probes of microbial community behaviour. Annu. Rev. Anal. Chem. 11, 441–461 (2018).

    Google Scholar 

  • Chabrillat, S. et al. Imaging spectroscopy for soil mapping and monitoring. Surv. Geophys. 40, 361–399 (2019).

    Google Scholar 

  • Mohanty, B. P., Cosh, M. H., Lakshmi, V. & Montzka, C. Soil moisture remote sensing: state-of-the-science. Vadose Zone J. 16, 1–9 (2017).

    Google Scholar 

  • Paustian, K. et al. Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Manage. 10, 567–587 (2019).

    Google Scholar 

  • Duckett, T. et al. Agricultural robotics: the future of robotic agriculture. Preprint arXiv https://arxiv.org/abs/1806.06762 (2018).

  • Hussain, I., Olson, K. R., Wander, M. M. & Karlen, D. L. Adaptation of soil quality indices and application to three tillage systems in southern Illinois. Soil Tillage Res. 50, 237–249 (1999).

    Google Scholar 

  • Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81, 589–601 (2017).

    Google Scholar 

  • Svoray, T., Hassid, I., Atkinson, P. M., Moebius-Clune, B. N. & van Es, H. M. Mapping soil health over large agriculturally important areas. Soil Sci. Soc. Am. J. 79, 1420–1434 (2015).

    Google Scholar 

  • Moebius-Clune, B. N. et al. Comprehensive Assessment of Soil Health – The Cornell Framework, Edition 3.1 (Cornell Univ. Press, 2016).

  • Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).

    Google Scholar 

  • Lima, A. C. R., Brussaard, L., Totola, M. R., Hoogmoed, W. B. & de Goede, R. G. M. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 64, 194–200 (2013).

    Google Scholar 

  • Verheijen, F. G., Bellamy, P. H., Kibblewhite, M. G. & Gaunt, J. L. Organic carbon ranges in arable soils of England and Wales. Soil Use Manage. 21, 2–9 (2005).

    Google Scholar 

  • Bucka, F. B., Kölbl, A., Uteau, D., Peth, S. & Kögel-Knabner, I. Organic matter input determines structure development and aggregate formation in artificial soils. Geoderma 354, 113881 (2019).

    Google Scholar 

  • Kaiser, K. et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci. Rep. 6, 33696 (2016).

    Google Scholar 

  • Jordan-Meille, L. et al. An overview of fertilizer-P recommendations in Europe: soil testing, calibration and fertilizer recommendations. Soil Use Manage. 28, 419–435 (2012).

    Google Scholar 

  • McLellan, E. L. et al. The nitrogen balancing act: tracking the environmental performance of food production. Bioscience 68, 194–203 (2018).

    Google Scholar 

  • Brevik, E. C. & Sauer, T. J. The past, present, and future of soils and human health studies. Soil 1, 35–46 (2015).

    Google Scholar 

  • Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 5, 7–13 (2018).

    Google Scholar 

  • Bampa, F. et al. Harvesting European knowledge on soil functions and land management using multi-criteria decision analysis. Soil Use Manage. 35, 6–20 (2019).

    Google Scholar 

  • Schulte, R. P. et al. Demands on land: mapping competing societal expectations for the functionality of agricultural soils in Europe. Environ. Sci. Policy 100, 113–125 (2019).

    Google Scholar 

  • Ward, M. O., Grinstein, G. & Keim, D. Interactive Data Visualization: Foundations, Techniques, and Applications (AK Peters/CRC Press, 2015).

  • Villamil, M. B., Miguez, F. E. & Bollero, G. A. Multivariate analysis and visualization of soil quality data for no-till systems. J. Environ. Qual. 37, 2063–2069 (2008).

    Google Scholar 

  • Börner, K., Bueckle, A. & Ginda, M. Data visualization literacy: definitions, conceptual frameworks, exercises, and assessments. Proc. Natl Acad. Sci. USA 116, 1857–1864 (2019).

    Google Scholar 

  • Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    Google Scholar 

  • Tian, R. & Wu, J. Groundwater quality appraisal by improved set pair analysis with game theory weightage and health risk estimation of contaminants for Xuecha drinking water source in a loess area in Northwest China. Hum. Ecol. Risk Assess. Int. J. 25, 132–157 (2019).

    Google Scholar 

  • Finger, R., Swinton, S. M., Benni, N. E. & Walter, A. Precision farming at the nexus of agricultural production and the environment. Annu. Rev. Resour. Econ. 11, 313–335 (2019).

    Google Scholar 

  • van Joolingen, W. R., de Jong, T., Lazonder, A. W., Savelsbergh, E. R. & Manlove, S. Co-Lab: research and development of an online learning environment for collaborative scientific discovery learning. Comput. Hum. Behav. 21, 671–688 (2005).

    Google Scholar 

  • Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. Soil Health Technical Note No. 450-03 (U.S. Department of Agriculture, Natural Resources Conservation Service, 2019).

  • Haberern, J. A soil health index. J. Soil Water Conserv. 47, 6 (1992).

    Google Scholar 

  • Pankhurst, C. E. et al. Evaluation of soil biological properties as potential bioindicators of soil health. Austr. J. Exp. Agric. 35, 1015–1028 (1995).

    Google Scholar 

  • Doran, J. W. & Zeiss, M. R. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15, 3–11 (2000).

    Google Scholar 

  • Winiwarter, V. & Blum, W. E. in Footprints in the Soil. People and Ideas in Soil History (ed. Warkentin, B.) 107–122 (Elsevier, 2006).

  • Capra, G. F., Ganga, A. & Moore, A. F. Songs for our soils. How soil themes have been represented in popular song. Soil Sci. Plant Nutr. 63, 517–525 (2017).

    Google Scholar 

  • Jenny, H. in Study Week on Organic Matter and Soil Fertility. Pontificiae Academiae Scientarium Scripta, Varia 32. 947–979 (North Holland Publ. Co and Wiley Interscience Division, 1968).

  • Feller, C., Landa, E. R., Toland, A. & Wessolek, G. Case studies of soil in art. Soil 1, 543–559 (2015).

    Google Scholar 

  • Brevik, E. C. & Hartemink, A. E. Early soil knowledge and the birth and development of soil science. Catena 83, 23–33 (2010).

    Google Scholar 

  • Carson, R. Silent Spring (Houghton Mifflin, 1962).

  • Lovelock, J. E. Gaia, a New Look at Life on Earth (Oxford Univ. Press, 1979).

  • Keesstra, S. D. et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2, 111–128 (2016).

    Google Scholar 

  • Mausel, P. W. Soil quality in Illinois — an example of a soils geography resource analysis. Prof. Geogr. 23, 127–136 (1971).

    Google Scholar 

  • Sojka, R. E. & Upchurch, D. R. Reservations regarding the soil quality concept. Soil Sci. Soc. Am. J. 63, 1039–1054 (1999).

    Google Scholar 

  • Rumpel, C. et al. Put more carbon in soils to meet Paris climate pledges. Nature 564, 32–34 (2018).

    Google Scholar 

  • Freidberg, S. Assembled but unrehearsed: corporate food power and the ‘dance’ of supply chain sustainability. J. Peasant Stud. 47, 383–400 (2020).

    Google Scholar 

  • Chabbi, A. et al. Aligning agriculture and climate policy. Nat. Clim. Change 7, 307–309 (2017).

    Google Scholar 

  • Puig de la Bellacasa, M. Re-animating soils: transforming human–soil affections through science, culture and community. Sociol. Rev. 67, 391–407 (2019).

    Google Scholar 

  • Source