Skip to main content

Crop Rotation

4 months ago
  • Alabouvette, C., Olivain, C., & Steinberg, C. (2006). Biological control of plant diseases: The European situation. European Journal of Plant Pathology, 114(3), 329–341.

    Article  Google Scholar 

  • Bailey, K. L., & Lazarovits, G. (2003). Suppressing soil-borne diseases with residue management and organic amendments. Soil and Tillage Research, 72(2), 169–180.

    Article  Google Scholar 

  • Barker, K. R., & Koenning, S. R. (1998). Developing sustainable systems for nematode management. Annual Review of Phytopathology, 36, 165–205.

    Article  CAS  PubMed  Google Scholar 

  • Bender, S. F. A., Wagg, C., & van Heijden, M. G. A. (2016). An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution, 31(6), 440–452.

    Article  Google Scholar 

  • Bennet, H. H. (1947). Elements of Soil Conservation. New York: McGraw Hill.

    Book  Google Scholar 

  • Bierderbeck, V. O., Janzen, H. H., Campbell, C. A., & Zentner, R. P. (1994). Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biology & Biochemistry, 26(12), 1647–1656.

    Article  Google Scholar 

  • Boincean, B. P. (1999). Ecological Agriculture in the Republic of Moldova (Crop Rotation and Soil Organic Matter). Chisinau: Stiinta (Russian).

    Google Scholar 

  • Boincean, B. P. (2014). Fifty years of field experiments with crop rotations and continuous cultures at the Selectia Research Institute for Field Crops. In D. L. Dent (Ed.), Soil as World Heritage (pp. 175–200). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Broadberry, S., Campbell, B.M.S., Overton, M., et al. (2009) Historical national accounts for Britain 1300–1850: Some preliminary estimates. http://warwick.ac.uk/fac/soc/economics/staff/sbroadberry/wp/britishgdplongrun.pdf.

  • Bullock, D. G. (1992). Crop rotation. Critical Reviews in Plant Sciences, 11(4), 308–326.

    Article  Google Scholar 

  • Campbell, C. A., Biederbeck, V. O., Zentner, B. P., & Lafond, G. P. (1991). Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin Black Chernozem. Canadian Journal of Soil Science, 71, 363–376.

    Article  CAS  Google Scholar 

  • Campbell, C. A., Brand, S. A., Biederbeck, V. O., et al. (1992). Effect of crop rotations and rotation phase on characteristics of soil organic matter in a Dark Brown Chernozemic soil. Canadian Journal of Soil Science, 72, 403–416.

    Article  CAS  Google Scholar 

  • Campbell, C. A., Myers, R. J. K., & Curtin, D. (1995). Managing nitrogen for sustainable crop production. Fertilizer Research, 42, 277–296.

    Article  CAS  Google Scholar 

  • Cardina, J., Herms, C. P., & Doohan, D. J. (2002). Crop rotation and tillage system effects on weed seed banks. Weed Science, 50(4), 448–460.

    Article  CAS  Google Scholar 

  • Chatterton, L., & Chatterton, B. (1996). Sustainable dryland farming. Farmer innovation in a Mediterranean climate. Cambridge University Press.

    Google Scholar 

  • Chou, C.-H. (2010). Roles of allelopathy in plant biodiversity and sustainable agriculture. Critical Reviews in Plant Sciences, 18(5), 609–636.

    Article  Google Scholar 

  • Constantinov, I. S. (1987). Soil erosion protection for intensive agriculture. Chisinau (Russian): Stiinta.

    Google Scholar 

  • Cook, R. J. (2000). Advances in plant health management in the twentieth century. Annual review of Phytopathology, 38, 95–116.

    Article  CAS  PubMed  Google Scholar 

  • Cresswell, H. P., & Kirkegaard, J. A. (1995). Subsoil amelioration by plant roots- the process and the evidence. Australian Journal of Soil Research, 33, 221–239.

    Article  Google Scholar 

  • Crews TE & MB Peoples. (2004). Legume versus fertilizer sources of nitrogen: Ecological tradeoffs and human needs. Agriculture Ecosystems and Environment 102, 279–297.

    Google Scholar 

  • Crews TE & MB Peoples. (2005). Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutrient Cycling in Agro-Ecosystems 72, 101–120.

    Google Scholar 

  • Crews, T. E., Blesh, J., Culman, S. W., et al. (2016). Going where no grains have gone before: From early to mid-succession. Agriculture, Ecosystems & Environment, 223, 223–238.

    Article  Google Scholar 

  • Dent, D. L. (2019). Green water, used by plants and managed by farmers: Measurement, accounting, policy. In J.A. Allan, M. Keulertz, A. J. Colman & B. Bromwich (Eds.) The Oxford handbook of water, food and society (pp. 29–44). New York: Oxford University Press.

    Google Scholar 

  • Doyarenko, A. G. (1963). Selected works. Moscow: Kolos (Russian).

    Google Scholar 

  • Drinkwater, L. E., Wagoner, P., & Sarrantonio, M. (1998). Legume-based cropping systems have reduced carbon and nitrogen losses. Letters to Nature 396, 262–265.

    Google Scholar 

  • Ermolov, A. S. (1879). Organization of the farm. Crop rotations II. AF Devrien, St Petersburg (Russian).

    Google Scholar 

  • FAO. (2017). The future of food and agriculture. Trends and challenges. Summary. Rome.

    Google Scholar 

  • Farooq, M., Jabron, K., Cheema, Z. A., et al. (2010). The role of allelopathy in agricultural pest management. Agricultural Pest Management, 67, 493–506.

    Google Scholar 

  • Franzluebbers, A. J., Sawchik, J., & Taboadac, M. A. (2014). Agronomic and environmental impacts of pasture-crop rotations in temperate North and South America. Agriculture, Ecosystems & Environment, 190, 18–26.

    Article  Google Scholar 

  • Franke, A. C., van den Brand, G. J., Vanlauwe, B., & Giller, K. E. (2018). Sustainable intensification through rotation with grain legumes in Sub-Saharan Africa: A review. Agriculture Ecosystems and Environment, 261, 172–185.

    Article  CAS  Google Scholar 

  • Fustec, J., Lesuffleur, F., Mathieu, S, & Cliquet, J. B. (2010). Nitrogen rhizo-deposition of legumes. A review. INRA Agronomy for Sustainable Development 30(1), 57–66.

    Google Scholar 

  • Giller, K. E., & Cadisch, G. (1995). Future benefits from biological nitrogen fixation: An ecological approach to agriculture. Plant and Soil, 174(1–2), 255–277.

    Article  CAS  Google Scholar 

  • Gliessman, S. R. (2000). Agroecosystem sustainability: Developing practical strategies. Boca Raton FL: CRC Press.

    Book  Google Scholar 

  • Goldstein, W. (1999). Alternative crop-rotation and management systems for the Pelouse. PhD thesis, Washington State University, Department of Agronomy and Soils, Pullman WA.

    Google Scholar 

  • Goulding, K. (2000). Nitrate leaching from arable and horticultural land. Soil Use and Management, 16, 145–151.

    Article  Google Scholar 

  • Gregorich, E. C., Drury, C. F., & Beldock, J. A. (2001). Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Canadian Journal of Soil Science, 81, 21–31.

    Article  CAS  Google Scholar 

  • Grizlov, E. B. (1975). Soil protecting system of agriculture. Rostov-on-Don: Rostov Book Publisher (Russian).

    Google Scholar 

  • Halvorson, A. D., Ruele, C. A., & Follett, R. T. (1999). Nitrogen fertilization effects on soil carbon and nitrogen in a dryland cropping system. Soil Science Society of America Journal, 63(4), 912–917.

    Article  CAS  Google Scholar 

  • Haynes, R. J., Swift, R. S., & Stephen, R. C. (1991). Influence of mixed cropping rotations (pasture-arable) on organic matter content, water stable aggregation and clod porosity in a group of soils. Soil and Tillage Research, 19, 77–87.

    Article  Google Scholar 

  • Homco, V. G., Homco, L. S., & Orlove, Z. A. (1987). Summary on crop rotation studies in Stavropol Region. In Agronomic basis for crop rotation specialization (pp. 154–162). Moscow: Agropromizdet (Russian).

    Google Scholar 

  • Hughes, H. D. (1925). The future of sweet clover in the corn belt. Journal of American Society of Agronomy, 17(7), 409–417.

    Article  Google Scholar 

  • Jensen, E. S., Peoples, M. B., Boddey, R. M., et al. (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries: A review. Agronomy and Sustainable Development 32, 329–364.

    Article  CAS  Google Scholar 

  • Johnson, T. C. (1927). Crop rotation in relation to soil productivity. Journal of the American Society of Agronomy, 19, 518–527.

    Article  Google Scholar 

  • Karlen, D. L., Hurley, E. G., Andrew, S. A., et al. (2006). Crop rotation effects on soil quality at three Northern corn/soybean belt locations. Agronomy Journal, 98, 484–495.

    Article  Google Scholar 

  • Karlen, D. L., Varvel, D. G., Bullock, D. G., & Cruse, R. M. (1994). Crop rotations for the 21st century. Advances in Agronomy, 53, 3–45.

    Google Scholar 

  • Kastanov, A. N. (1983). Scientific basis for soil and water protective agriculture on slopes. In Protective agriculture on slopes (pp. 9–22). Moscow (Russian).

    Google Scholar 

  • Kessel, C. van, & Hartley, C. (2000). Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation? Field Crops Research, 65, 165–181.

    Article  Google Scholar 

  • Konke, G., & Bertrand, A. (1962). Protection of the soil. Russian translation by SS Sobolev: State Publisher of Agricultural Literature, Moscow (Russian).

    Google Scholar 

  • Kremen, C., & Miles, A. (2012). Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities and trade-offs. Ecology and Society, 17(4), 40.

    Google Scholar 

  • Krupinsky, J. M., Bailey, K. L., McMullen, M. P., et al. (2002). Managing plant disease risk in diversified cropping systems. Agronomy Journal, 94(4), 198–209.

    Article  Google Scholar 

  • Kurov, P. (1916). How to obtain high yields of winter cereal crops in Bessarabia. Chisinau: Bessarabian Dept of Agriculture (Russian).

    Google Scholar 

  • Lecuta, I. (1889). The basis for a soil-improving farm (4th ed.). Translated from the French: St Petersburg (Russian).

    Google Scholar 

  • Lenssen, A. W., Waddell, J. T., Johnson, G. D., & Carlson, G. R. (2007). Diversified cropping systems in semiarid Montana: Nitrogen use during drought. Soil and Tillage Research, 94, 362–375.

    Article  Google Scholar 

  • Likov, A. M., Esikov, A. I., & Novikov, M. N. (2004) Soil organic matter of arable non-black soils. Russian Academy of Agricultural Sciences (Russian).

    Google Scholar 

  • Liebman, M., & Dyck, E. (1993). Crop rotation and intercropping strategies for weed management. Ecological Applications, 3(1), 92–122.

    Article  PubMed  Google Scholar 

  • Lin, R., & Chen, C. (2014). Tillage, crop rotation, and nitrogen management strategies for wheat in Central Montana. Agronomy Journal, 106, 475–485.

    Article  CAS  Google Scholar 

  • Malitev, T. S. (1983). Thoughts about yields (Vol. 1). Celjabinsk: South-Ural Book Publishers (Russian).

    Google Scholar 

  • Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.

    Article  CAS  PubMed  Google Scholar 

  • Mӓder, P., Edenhofer, S., Boller, T., et al. (2000). Arbuscular mycorrhiza in a long-term field trial comparing low-input (organic, biological) and high input conventional farming systems in a crop rotation. Biological Fertility of Soils, 31(2), 150–156.

    Article  Google Scholar 

  • Mulvaney, R. L., Khan, S. A., Hoeft, R. G., & Brown, H. M. (2001). A soil organic nitrogen fraction that reduces the need for nitrogen fertilization. Soil Science Society of America Journal, 65, 1164–1172.

    Article  CAS  Google Scholar 

  • Nemecek, T., Richthofen, J.-S., von, Dubois, G., et al. (2008). Environmental impacts of introducing grain legumes into European crop rotations. European Journal of Agronomy, 28, 380–393.

    Article  Google Scholar 

  • Oakley, R. A. (1925). The economics of increased legume production (Symposium on the legume problem). Journal of the American Society of Agronomy, 17(7), 389–394.

    Article  Google Scholar 

  • O’Dea, J. K., Jones, C. A., Zabinski, C. A., et al. (2015). Legume, cropping intensity, and N-fertilization effects on soil attributes and processes from an eight-year-old semiarid wheat system. Nutrient Cycling in Agro-Ecosystems, 102(2), 179–194.

    Article  CAS  Google Scholar 

  • Pacoski, I. K. (1914). On weed control. Notice of the Empire Society of South Russia (Odessa) 5–6, 37–61 (Russian).

    Google Scholar 

  • Peoples, M. B., Brockwell, J., Herridge, D. F., et al. (2009). The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Review article. Symbiosis 48, 1–17.

    Article  CAS  Google Scholar 

  • Peters, R. D., Sturz, A. V., Carter, M. R., & Sanderson, J. B. (2003). Developing disease-suppressive soils through crop rotation and tillage management practices. Soil and Tillage Research, 72, 181–192.

    Article  Google Scholar 

  • Powlson, D. S., MacDonald, A. J., & Poulton, P. R. (2014). The continuing value of long-term field experiments. Insights for achieving food security and environmental integrity. In D. L. Dent (Ed.), Soil as world heritage (pp. 131–158). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Power, J. F. (1990). Fertility management and nutrient cycling. Advances in Soil Science, 13, 131–149.

    Article  Google Scholar 

  • Pryanishnikov, D. N. (1953). Nitrogen in crop life and in agriculture. Selected works (vol. II). Moscow: State Publisher of Agricultural Literature (Russian).

    Google Scholar 

  • Ratnedass, A., Fernandes, P., Avelino, J., & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agro-ecosystems: A review. Agronomy and Sustainable Development, 32(1), 273–303.

    Article  Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., et al. (1997) Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation. Agriculture handbook, 703. Washington DC: US Department Agriculture.

    Google Scholar 

  • Ridley, A. M., Christy, B., Dunin, F. X., et al. (2001). Lucerne in crop rotations on the Riverine Plains. 1. The soil water balance. Australian Journal of Agricultural Research, 52, 263–277.

    Article  Google Scholar 

  • Rodionovschi, F. K. (1953). Soil water regime for separate crops in the crop rotation. Pochvovedenie, 12, 90–98. (Russian).

    Google Scholar 

  • Rotmistrov, V. G. (1913). Crop rotation in relation to soil productivity. Journal of the American Society of Agronomy, 19, 518–527.

    Google Scholar 

  • Russel, Sir E. J. (1912). Soil conditions and crop growth. Monographs in biochemistry. London: Longmans Green and Co.

    Google Scholar 

  • Russel, E. W. (1950). Soil conditions and crop growth, 8th edn. Longman (Russian translation 1955).

    Google Scholar 

  • Soon, L. K., Brand, S. A., & Malhi, S. S. (2006). Nitrogen supply of a Dark brown Chernozem soil and its utilization by wheat. Canadian Journal of Soil Science, 86, 483–491.

    Article  CAS  Google Scholar 

  • Stadnic, S. S., & Boincean, B. P. (2017) Economic efficiency of fertilization for different crops in the crop rotation. In Sustainable agriculture of Moldova: Modern challenges and perspectives (pp. 17–22). Indigo Colour, Bălţi (Romanian).

    Google Scholar 

  • Stirling Lady AMW. (1912). Coke of Norfolk and his friends. London: John Lane The Bodley Head.

    Google Scholar 

  • Turner, N. C. (2004). Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. Journal of Experimental Botany, 55(407), 2413–2425.

    Article  CAS  PubMed  Google Scholar 

  • Williams, V. R. (1950–1952) Selected works (vol. 5-10). Moscow: State Publisher of Agricultural Literature (Russian).

    Google Scholar 

  • Wezel, A., Casagrande, M., Celette, F., et al. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34(1), 1–20.

    Article  Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1965) Predicting rainfall erosion losses from cropland east of the Rocky Mountains: Guide for selection of practices for soil and water conservation. Agriculture Handbook 282. Re-issued 1978 as Predicting rainfall erosion losses: Guide to conservation planning. Agriculture Handbook 537. Washington DC: US Department of Agriculture.

    Google Scholar 

  • Zaharcenco, I. G. (1960). Soil water regime in crop rotation with cereals and sugar beet. Pochvovedenie, 3, 34–42. (Russian).

    Google Scholar 

  • Zaslavschi, M. (1966). Soil erosion and agriculture on slopes. Chisinau: Cartea Moldoveneasea (Russian).

    Google Scholar 

  • Zaslavschi, M. (1979). Soil erosion. Moscow: Misli (Russian).

    Google Scholar 

  • Source